martes, 6 de octubre de 2009

En condensador es un dispositivo formado por dos placas metálicas separadas por un aislante llamado dieléctrico.
google_protectAndRun("ads_core.google_render_ad", google_handleError, google_render_ad);
Un dieléctrico o aislante es un material que evita el paso de la corriente.
El condensador o capacitor almacena energía en la forma de un campo eléctrico (es evidente cuando el capacitor funciona con corriente directa) y se llama capacitancia o capacidad a la cantidad de cargas eléctricas que es capaz de almacenar
El símbolo del capacitor es el que se muestra al lado derecho:
La capacidad depende de las características físicas del condensador:- Si el área de las placas que están frente a frente es grande la capacidad aumenta- Si la separación entre placas aumenta, disminuye la capacidad- El tipo de material dieléctrico que se aplica entre las placas también afecta la capacidad- Si se aumenta la tensión aplicada, se aumenta la carga almacenada
Dieléctrico o aislante
Un dieléctrico o aislante es un material que evita el paso de la corriente, y su función es aumentar la capacitancia del capacitor.
Los diferentes materiales que se utilizan como dieléctricos tiene diferentes grados de permitividad(diferente capacidad para el establecimiento de un campo eléctrico
Mientras mayor sea la permitividad, mayor es la capacidad del condensador. La capacitancia de un condensador está dada por la fórmula: C = Er x A / d
donde:- C = capacidad- Er = permitividad- A = área entre placas- d = separación entre las placas
La unidad de medida es el faradio. Hay submúltiplos como el miliFaradio (mF), microFaradio (uF), el nanoFaradio (nF) y el picoFaradio (pF)
Las principales características eléctricas de un condensador son su capacidad o capacitancia y su máxima tensión entre placas (máxima tensión que es capaz de aguantar sin dañarse).

Conversión Delta-Estrella y Estrella-Delta - (Conversión Δ-Υ y Υ-Δ)
Con el propósito de poder simplificar el análisis de un circuito a veces es conveniente poder mostrar todo o una parte del mismo de una manera diferente, pero sin que el funcionamiento general de éste cambie.
Algunos circuitos tienen un grupo de resistores que están ordenadas formando como un triángulo y otros como una estrella. Ver los diagramas abajo.
Hay una manera sencilla de convertir estos resistores de un formato al otro y viceversa.
No es sólo asunto de cambiar la posición de las resistores si no de obtener los nuevos valores que estos tendrán.


La fórmulas a utilizar son las siguientes: (ver los gráficos anteriores)
Conversión de la configuración delta a la estrella
- R1 = (Ra x Rc) / (Ra + Rb + Rc)- R2 = (Rb x Rc) / (Ra + Rb + Rc)- R3 = (Ra x Rb) / (Ra + Rb + Rc)
Para este caso el denominador es el mismo para todas las ecuaciones.Si Ra = Rb = Rc = RDelta, entonces R1 = R2 = R3 = RY y las ecuaciones anteriores se reducen a RY = RDelta / 3
Conversión de la configuración estrella a delta
- Ra = [ (R1 x R2) + (R1 x R3) + (R2 x R3) ] / R2- Rb = [ (R1 x R2) + (R1 x R3) + (R2 x R3) ] / R1- Rc = [ (R1 x R2) + (R1 x R3) + (R2 x R3) ] / R3
Para este caso el numerador es el mismo para todas las ecuaciones.Si R1 = R2 = R3 = RY, entonces Ra = Rb = Rc = RDelta y las ecuaciones anteriores se reducen a RDelta = 3xRY
Ejemplo:
En el gráfico que se al lado izquierdo, dentro del recuadro una conexión tipo Delta, en serie con una resistor R.
Si se realiza la transformación de los resistores que están en Delta a Estrella se obtiene lo que está al lado derecho del gráfico (ver el recuadro).
Ahora se tiene al resistor R en serie con el resistor R1. Estos se suman y se obtiene un nuevo resistor R1.
Esta nueva conexión en Estrella puede quedarse así o convertirse otra vez a una conexión DeltaNota:Conexión Estrella = Conexión "Y"Conexión Delta = Conexión Triángulo
El teorema de Thevenin sirve para convertir un circuito complejo, que tenga dos terminales (ver los gráficos # 1 y # 5), en uno muy sencillo que contenga sólo una fuente de tensión o voltaje (VTh) en serie con una resistencia (RTh). El circuito equivalente tendrá una fuente y una resistencia en serie como ya se había dicho, en serie con la resistencia que desde sus terminales observa la conversión (ver en el gráfico # 5, la resistencia de 5K al lado derecho)). A este voltaje se le llama VTh y a la resistencia se la llama RTh.








Para obtener VTh (Voltaje de Thevenin), se mide el voltaje en los dos terminales antes mencionados (gráfico # 3) y ese voltaje será el voltaje de Thevenin
Para obtener RTh (Resistencia de Thevenin), se reemplazan todas las fuentes de voltaje por corto circuitos y se mide la resistencia que hay desde los dos terminales antes mencionados. (ver gráfico # 4)







Con los datos encontrados se crea un nuevo circuito muy fácil de entender, al cual se le llama Equivalente de Thevenin. Con este último circuito es muy fácil obtener la tensión, corriente y potencia hay en la resistencia de 5 K (gráfico # 5)


En este caso el VTh = 6V y RTh = 15 KAsí, en la resistencia de 5K: - I (corriente) = V / R = 6 V / 20K = 0.3 mA (miliamperios) - V (voltaje) = I x R = 0.3 mA x 5K = 1.5V. (voltios) - P (potencia) = P x I = 0.675 mW (miliwatts)








lunes, 5 de octubre de 2009

Como hay tres corrientes incógnitas, hay tres filas en la tabla.
Utilizando el método de sustitución o con ayuda de la determinantes se obtienen los siguientes valores:I1 = 0.348 amperiosI2 = 0.006285 amperiosI3 = -1.768 amperios. (el signo menos indica que el sentido supuesto de la corriente I3 no era el correcto.

sábado, 3 de octubre de 2009


Resistencia eléctrica
Se denomina resistencia eléctrica, simbolizada habitualmente como R, a la dificultad u oposición que presenta un cuerpo al paso de una corriente eléctrica para circular a través de él. En el Sistema Internacional de Unidades, su valor se expresa en ohmios, que se designa con la letra griega omega mayúscula, Ω. Para su medida existen diversos métodos, entre los que se encuentra el uso de un ohmímetro.
Esta definición es válida para la corriente continua y para la corriente alterna cuando se trate de elementos resistivos puros, esto es, sin componente inductiva ni capacitiva. De existir estos componentes reactivos, la oposición presentada a la circulación de corriente recibe el nombre de impedancia.
Según sea la magnitud de esta oposición, las sustancias se clasifican en conductoras, aislantes y semiconductoras. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.

Comportamientos ideal y real


Figura 2. Circuito con resistencia.
Una resistencia ideal es un elemento pasivo que disipa energía en forma de calor según la ley de Joule. También establece una relación de proporcionalidad entre la intensidad de corriente que la atraviesa y la tensión medible entre sus extremos, relación conocida como ley de Ohm:
donde i(t) es la corriente eléctrica que atraviesa la resistencia de valor R y u(t) es la diferencia de potencial que se origina. En general, una resistencia real podrá tener diferente comportamiento en función del tipo de corriente que circule por ella.
Comportamiento en corriente continua [editar]
Una resistencia real en corriente continua (CC) se comporta prácticamente de la misma forma que si fuera ideal, esto es, transformando la energía eléctrica en calor por efecto Joule. La ley de Ohm para corriente continua establece que:
donde R es la resistencia en ohmios, V es la diferencia de potencial en voltios e I es la intensidad de corriente en amperios.
Comportamiento en corriente alterna [editar]


Figura 3. Diagrama fasorial.
Como se ha comentado anteriormente, una resistencia real muestra un comportamiento diferente del que se observaría en una resistencia ideal si la intensidad que la atraviesa no es continua. En el caso de que la señal aplicada sea senoidal, corriente alterna (CA), a bajas frecuencias se observa que una resistencia real se comportará de forma muy similar a como lo haría en CC, siendo despreciables las diferencias. En altas frecuencias el comportamiento es diferente, aumentando en la medida en la que aumenta la frecuencia aplicada, lo que se explica fundamentalmente por los efectos inductivos que producen los materiales que conforman la resistencia real. Por ejemplo, en una resistencia de carbón los efectos inductivos solo provienen de los propios terminales de conexión del dispositivo mientras que en una resistencia de tipo bobinado estos efectos se incrementan por el devanado de hilo resistivo alrededor del soporte cerámico, además de aparecer una cierta componente capacitiva si la frecuencia es especialmente elevada. En estos casos, para analizar los circuitos, la resistencia real se sustituye por una asociación serie formada por una resistencia ideal y por una bobina también ideal, aunque a veces también se les puede añadir un pequeño condensador ideal en paralelo con dicha asociación serie. En los conductores, además, aparecen otros efectos entre los que cabe destacar el efecto pelicular....
Consideremos una resistencia R, como la de la figura 2, a la que se aplica una tensión alterna de valor:
De acuerdo con la ley de Ohm circulará una corriente alterna de valor:
donde . Se obtiene así, para la corriente, una función senoidal que está en fase con la tensión aplicada (figura 3).
Si se representa el valor eficaz de la corriente obtenida en forma polar:
Y operando matemáticamente:
De donde se deduce que en los circuitos de CA la resistencia puede considerarse como una magnitud compleja con parte real y sin parte imaginaria o, lo que es lo mismo con argumento nulo, cuya representación binómica y polar serán:
Asociación de resistencias [editar]
Resistencia equivalente [editar]


Figura 4. Asociaciones generales de resistencias: a) Serie y b) Paralelo. c) Resistencia equivalente
Se denomina resistencia equivalente, RAB, de una asociación respecto de dos puntos A y B, a aquella que conectada la misma diferencia de potencial, UAB, demanda la misma intensidad, I (ver figura 4). Esto significa que ante las mismas condiciones, la asociación y su resistencia equivalente disipan la misma potencia.
Asociación en serie [editar]
Dos o más resistencias se encuentran conectadas en serie cuando al aplicar al conjunto una diferencia de potencial, todas ellas son recorridas por la misma corriente.
Para determinar la resistencia equivalente de una asociación serie imaginaremos que ambas, figuras 4a) y 4c), están conectadas a la misma diferencia de potencial, UAB. Si aplicamos la segunda ley de Kirchhoff a la asociación en serie tendremos:
Aplicando la ley de Ohm:
En la resistencia equivalente:
Finalmente, igualando ambas ecuaciones se obtiene que:
Y eliminando la intensidad:
Por lo tanto, la resistencia equivalente a n resistencias montadas en serie es igual a la suma de dichas resistencias.
Asociación en paralelo [editar]
Dos o más resistencias se encuentran en paralelo cuando tienen dos terminales comunes de modo que al aplicar al conjunto una diferencia de potencial, UAB, todas la resistencias tienen la misma caída de tensión, UAB.
Para determinar la resistencia equivalente de una asociación en paralelo imaginaremos que ambas, figuras 4b) y 4c), están conectadas a la misma diferencia de potencial mencionada, UAB, lo que originará una misma demanda de corriente eléctrica, I. Esta corriente se repartirá en la asociación por cada una de sus resistencias de acuerdo con la primera ley de Kirchhoff:
Aplicando la ley de Ohm:
En la resistencia equivalente se cumple:
Igualando ambas ecuaciones y eliminando la tensión UAB:
De donde:
Por lo que la resistencia equivalente de una asociación en paralelo es igual a la inversa de la suma de las inversas de cada una de las resistencias.
Existen dos casos particulares que suelen darse en una asociación en paralelo:
1. Dos resistencias: en este caso se puede comprobar que la resistencia equivalente es igual al producto dividido por la suma de sus valores, esto es:
2. k resistencias iguales: su equivalente resulta ser:
Asociación mixta [editar]


Figura 5. Asociaciones mixtas de cuatro resistencias: a) Serie de paralelos, b) Paralelo de series y c) Ejemplo de una de las otras posibles conexiones.
En una asociación mixta podemos encontrarnos conjuntos de resistencias en serie con conjuntos de resistencias en paralelo. En la figura 5 pueden observarse tres ejemplos de asociaciones mixtas con cuatro resistencias.
A veces una asociación mixta es necesaria ponerla en modo texto. Para ello se utilizan los símbolos "+" y "//" para designar las asociaciones serie y paralelo respectivamente. Así con (R1 + R2) se indica que R1 y R2 están en serie mientras que con (R1//R2) que están en paralelo. De acuerdo con ello, las asociaciones de la figura 5 se pondrían del siguiente modo:
a) (R1//R2)+(R3//R4)
b) (R1+R3)//(R2+R4)
c) ((R1+R2)//R3)+R4
Para determinar la resistencia equivalente de una asociación mixta se van simplificando las resistencias que están en serie y las que están en paralelo de modo que el conjunto vaya resultando cada vez más sencillo, hasta terminar con un conjunto en serie o en paralelo. Como ejemplo se determinarán las resistencias equivalentes de cada una de las asociaciones de la figura 5:
a)
R1//R2 = R1//2
R3//R4 = R3//4
RAB = R1//2 + R3//4
b)
R1+R3 = R1+3
R2+R4 = R2+4
RAB = R1+3//R2+4
c)
R1+R2 = R1+2
R1+2//R3 = R1+2//3
RAB = R1+2//3 + R4
Desarrollando se obtiene:
a)
b)
c)
Asociaciones estrella y triángulo [editar]
Artículo principal: Teorema de Kenelly


Figura 6.a) Asociación en estrella.b) Asociación en triángulo.
En la figura 6a) y b) pueden observarse respectivamente las asociaciones estrella y triángulo, también llamadas T y π o delta respectivamente. Este tipo de asociaciones son comunes en las cargas trifásicas. Las ecuaciones de equivalencia entre ambas asociaciones vienen dadas por el teorema de Kenelly:
Resistencias en estrella en función de las resistencias en triángulo (transformación de triángulo a estrella)
El valor de cada una de las resistencias en estrella es igual al cociente del producto de las dos resistencias en triángulo adyacentes al mismo terminal entre la suma de las tres resistencias en triángulo.
Resistencias en triángulo en función de las resistencias en estrella (transformación de estrella a triángulo)
El valor de cada una de las resistencias en triángulo es igual la suma de las dos resistencias en estrella adyacentes a los mismos terminales más el cociente del producto de esas dos resistencias entre la otra resistencia.
Asociación puente [editar]


Figura 7. Asociación puente.
Si en una asociación paralelo de series como la mostrada en la figura 5b se conecta una resistencia que una las dos ramas en paralelo, se obtiene una asociación puente como la mostrada en la figura 7.
La determinación de la resistencia equivalente de este tipo de asociación tiene sólo interés pedagógico. Para ello se sustituye bien una de las configuraciones en triangulo de la asociación, la R2-R4-R5 o la R3-R4-R5 por su equivalente en estrella, bien una de las configuraciones en estrella, la R1-R3-R5 o la R3-R4-R5 por su equivalente en triángulo. En ambos casos se consigue transformar el conjunto en una asociación mixta de cálculo sencillo. Otro método consiste en aplicar una fem (E) a la asociación y obtener su resistencia equivalente como relación de dicha fem y la corriente total demandada (E/I).
El interés de este tipo de asociación está en el caso en el que por la resistencia central, R5, no circula corriente, pues permite calcular los valores de una de las resitencias, R1, R2, R3 o R4, en función de las otras tres. En ello se basan los puentes de Wheatstone y de hilo para la medida de resistencias con precisión.
Resistencia de un conductor [editar]
Resistividad de algunos materiales a 20%nbsp;°C
Material
Resistividad (Ω·m)
Plata[1]
1,55 x 10-8
Cobre[2]
1,70 x 10-8
Oro[3]
2,22 x 10-8
Aluminio[4]
2,82 x 10-8
Wolframio[5]
5,65 x 10-8
Níquel[6]
6,40 x 10-8
Hierro[7]
8,90 x 10-8
Platino[8]
10,60 x 10-8
Estaño[9]
11,50 x 10-8
Acero inoxidable 301[10]
72,00 x 10-8
Grafito[11]
60,00 x 10-8
El conductor es el encargado de unir eléctricamente cada uno de los componentes de un circuito. Dado que tiene resistencia óhmica, puede ser considerado como otro componente más con características similares a las de la resistencia eléctrica.
De este modo, la resistencia de un conductor eléctrico es la medida de la oposición que presenta al movimiento de los electrones en su seno, o sea la oposición que presenta al paso de la corriente eléctrica. Generalmente su valor es muy pequeño y por ello se suele despreciar, esto es, se considera que su resistencia es nula (conductor ideal), pero habrá casos particulares en los que se deberá tener en cuenta su resistencia (conductor real).
La resistencia de un conductor depende de la longitud del mismo ( ), de su sección ( ), del tipo de material y de la temperatura. Si consideramos la temperatura constante (20 ºC), la resistencia viene dada por la siguiente expresión:
en la que es la resistividad (una característica propia de cada material).
Influencia de la temperatura [editar]
La variación de la temperatura produce una variación en la resistencia. En la mayoría de los metales aumenta su resistencia al aumentar la temperatura, por el contrario, en otros elementos, como el carbono o el germanio la resistencia disminuye.
Como ya se comentó, en algunos materiales la resistencia llega a desaparecer cuando la temperatura baja lo suficiente. En este caso se habla de superconductores.
Experimentalmente se comprueba que para temperaturas no muy elevadas, la resistencia a un determinado valor de t ( ), viene dada por la expresión:
donde
= Resistencia de referencia a 20°C.
= Coeficiente Olveriano de temperatura.
= Diferencia de temperatura respecto a los 20°C (t-20).
Potencia que disipa una resistencia [editar]
Una resistencia disipa en calor una cantidad de potencia proporcional a la intensidad que la atraviesa y a la caída de tensión que aparece en sus bornes. Esto es , aunque suele ser más cómodo usar la ley de Joule .
Observando las dimensiones del cuerpo de la resistencia, las características de conductividad de calor del material que la forma y que la recubre, y el ambiente en el cual está pensado que opere, el fabricante calcula la potencia que es capaz de disipar cada resistencia como componente discreto, sin que el aumento de temperatura provoque su destrucción. Esta temperatura de fallo puede ser muy distinta según los materiales que se estén usando. Esto es, una resistencia de 2W formada por un material que no soporte mucha temperatura, estará casi fría (y será grande); pero formada por un material metálico, con recubrimiento cerámico, podría alcanzar altas temperaturas (y podrá ser mucho más pequeña).
El fabricante dará como dato el valor en vatios que puede disipar cada resistencia en cuestión. Este valor puede estar escrito en el cuerpo del componente o se tiene que deducir de comparar su tamaño con los tamaños estándar y su respectivas potencias. El tamaño de las resistencias comunes, cuerpo cilíndrico con 2 terminales, que aparecen en los aparatos eléctricos domésticos suelen ser de 1/4 W, existiendo otros valores de potencias de comerciales de 1/2 W, 1 W, 2 W, etc.
Puerta lógica
Una puerta lógica, o compuerta lógica, es un dispositivo electrónico que es la expresión física de un operador booleano en la lógica de conmutación. Cada puerta lógica consiste en una red de dispositivos interruptores que cumple las condiciones booleanas para el operador particular. Son esencialmente circuitos de conmutación integrados en un chip.
Claude Elwood Shannon experimentaba con relés o interruptores electromagnéticos para conseguir las condiciones de cada compuerta lógica, por ejemplo, para la función booleana Y (AND) colocaba interruptores en circuito serie, ya que con uno solo de éstos que tuviera la condición «abierto», la salida de la compuerta Y sería = 0, mientras que para la implementación de una compuerta O (OR), la conexión de los interruptores tiene una configuración en circuito paralelo.
La tecnología microelectrónica actual permite la elevada integración de transistores actuando como conmutadores en redes lógicas dentro de un pequeño circuito integrado. El chip de la CPU es una de las máximas expresiones de este avance tecnológico.
En nanotecnología se está desarrollando el uso de una compuerta lógica molecular, que haga posible la miniaturización de circuitos.

Lógica directa
Puerta SI o Buffer [

Símbolo de la función lógica SI a) Contactos, b) Normalizado y c) No normalizado
La puerta lógica SI, realiza la función booleana igualdad. En la práctica se suele utilizar como amplificador de corriente (buffer en inglés).
La ecuación característica que describe el comportamiento de la puerta SI es:
Su tabla de verdad es la siguiente:
Tabla de verdad puerta SI
Entrada A
Salida A
0
0
1
1
Puerta [editar]

Símbolo de la función lógica Y a) Contactos, b) Normalizado y c) No normalizado
La puerta lógica Y, más conocida por su nombre en inglés AND, realiza la función booleana de producto lógico. Su símbolo es un punto (·), aunque se suele omitir. Así, el producto lógico de las variables A y B se indica como AB, y se lee A y B o simplemente A por B.
La ecuación característica que describe el comportamiento de la puerta AND es:
Su tabla de verdad es la siguiente:
Tabla de verdad puerta AND
Entrada A
Entrada B
Salida
Puerta [editar]
000010100111
Símbolo de la función lógica O a) Contactos, b) Normalizado y c) No normalizado
La puerta lógica O, más conocida por su nombre en inglés OR, realiza la operación de suma lógica.
La ecuación característica que describe el comportamiento de la puerta OR es:
Su tabla de verdad es la siguiente:
Tabla de verdad puerta OR
Entrada A
Entrada B
Salida
000011101111
Podemos definir la puerta O como aquella que proporciona a su salida un 1 lógico si al menos una de sus entradas está a 1.
Puerta OR-exclusiva (XOR) [editar]

Símbolo de la función lógica O-exclusiva. a) Contactos, b) Normalizado y c) No normalizado
La puerta lógica O-exclusiva, más conocida por su nombre en inglés XOR, realiza la función booleana A'B+AB'. Su símbolo es el mas (+) inscrito en un círculo. En la figura de la derecha pueden observarse sus símbolos en electrónica.
La ecuación característica que describe el comportamiento de la puerta XOR es:
-
Su tabla de verdad es la siguiente:
Tabla de verdad puerta XOR
Entrada A
Entrada B
Salida
000011101110
Se puede definir esta puerta como aquella que da por resultado uno, cuando los valores en las entradas son distintos. ej: 1 y 0, 0 y 1 (en una compuerta de dos entradas).
Si la puerta tuviese tres o más entradas , la XOR tomaría la función de suma de paridad, cuenta el número de unos a la entrada y si son un número impar, pone un 1 a la salida, para que el número de unos pase a ser par. Esto es así porque la operación XOR es asociativa, para tres entradas escribiríamos: a (b c) o bien (a b) c. Su tabla de verdad sería:
XOR de tres entradas
Entrada A
Entrada B
Entrada C
Salida
0000111011101
Lógica negada [editar]
Puerta NO (NOT) [editar]

Símbolo de la función lógica NOT a) Contactos, b) Normalizado y c) Not normalizada
La puerta lógica NO (NOT en inglés) realiza la función booleana de inversión o negación de una variable lógica. Una variable lógica A a la cual se le aplica la negación se pronuncia como "no A" o "A negada".
La ecuación característica que describe el comportamiento de la puerta NOT es:
Su tabla de verdad es la siguiente:
Tabla de verdad puerta NOT
Entrada A
Salida
0
1
1
0
Se puede definir como una puerta que proporciona el estado inverso del que esté en su entrada.
Puerta NO-Y (NAND) [editar]

Símbolo de la función lógica NO-Y. a) Contactos, b) Normalizado y c) No normalizado
La puerta lógica NO-Y, más conocida por su nombre en inglés NAND, realiza la operación de producto lógico negado. En la figura de la derecha pueden observarse sus símbolos en electrónica.
La ecuación característica que describe el comportamiento de la puerta NAND es:
Su tabla de verdad es la siguiente:
Tabla de verdad puerta NAND
Entrada A
Entrada B
Salida
001011101110
Podemos definir la puerta NO-Y como aquella que proporciona a su salida un 0 lógico únicamente cuando todas sus entradas están a 1.
Puerta NO-O (NOR) [editar]

Símbolo de la función lógica NO-O. a) Contactos, b) Normalizado y c) No normalizado
La puerta lógica NO-O, más conocida por su nombre en inglés NOR, realiza la operación de suma lógica negada. En la figura de la derecha pueden observarse sus símbolos en electrónica.
La ecuación característica que describe el comportamiento de la puerta NOR es:
Su tabla de verdad es la siguiente:
Tabla de verdad puerta NOR
Entrada A
Entrada B
Salida

001010100110
Podemos definir la puerta NO-O como aquella que proporciona a su salida un 1 lógico sólo cuando todas sus entradas están a 0. La puerta lógica NOR constituye un conjunto completo de operadores.
Puerta equivalencia (XNOR) [editar]

Símbolo de la función lógica equivalencia. a) Contactos, b) Normalizado y c) No normalizado
La puerta lógica equivalencia, realiza la función booleana AB+~A~B. Su símbolo es un punto (·) inscrito en un círculo. En la figura de la derecha pueden observarse sus símbolos en electrónica. La ecuación característica que describe el comportamiento de la puerta XNOR es:
Su tabla de verdad es la siguiente:
Tabla de verdad puerta XNOR
Entrada A
Entrada B
Salida
001010100111
Se puede definir esta puerta como aquella que proporciona un 1 lógico, sólo si las dos entradas son iguales, esto es, 0 y 0 ó 1 y 1 (2 encendidos o 2 apagados).
Conjunto de puertas lógicas completo [editar]
Un conjunto de puertas lógicas completo es aquel con el que se puede implementar cualquier función lógica. A continuación se muestran distintos conjuntos completos (uno por línea):
Puertas AND, OR y NOT.
Puertas AND y NOT.
Puertas OR y NOT.
Puertas NAND.
Puertas NOR.
Además, un conjunto de puertas lógicas es completo si puede implementar todas las puertas de otro conjunto completo conocido. A continuación se muestran las equivalencias al conjunto de puertas lógicas completas con las funciones NAND y NOR.
Conjunto completo de puertas logicas para puertas NAND. Equivalencias. :
Conjunto de puertas logicas completo :
A
B


Salida función NAND(A,B)
Salida función NOR(A,B)
110111

00100010


10011011


10001001

1
1
Equivalencias del conjunto completo anterior con solo puertas NAND :
Equivalencias del conjunto completo anterior con solo puertas NOR :
Los condensadores
Es un componente electrónico que almacena cargas eléctricas para utilizarlas en un circuito en el momento adecuado.Está compuesto, básicamente, por un par de armaduras separadas por un material aislante denominado dieléctrico. La capacidad de un condensador consiste en almacenar mayor o menor número de cargas cuando está sometido a tensión.
Condensador básico
Símbolos del condensador
CARACTERÍSTICAS TÉCNICAS GENERALES
Capacidad nominal.- Es el valor teórico esperado al acabar el proceso de fabricación. Se marca en el cuerpo del componente mediante un código de colores o directamente con su valor numérico.Tolerancia.- Diferencia entre las desviaciones, de capacidad, superiores o inferiores según el fabricante.Tensión nominal.- Es la tensión que el condensador puede soportar de una manera continua sin sufrir deterioro
CLASIFICACIÓN
Condensadores fijos
Son componentes pasivos de dos terminales. Se clasifican en función del material dieléctrico y su forma. Pueden ser: de papel, de plástico, cerámico, electrolítico, de mica, de tántalo, de vidrio, de poliéster, Estos son los más utilizados. A continuación se describirá, sin profundizar, las diferencias entre unos y otros, así como sus aplicaciones más usuales.
De papel
El dieléctrico es de celulosa impregnada con resinas o parafinas. Destaca su reducido volumen y gran estabilidad frente a cambios de temperatura. Tienen la propiedad de autor regeneración en caso de perforación. Las armaduras son de aluminio. Se fabrican en capacidades comprendidas entre 1uF y 480uF con tensiones entre 450v y 2,8Kv.Se emplean en electrónica de potencia y energía para acoplamiento, protección de impulsos y aplanamiento de ondulaciones en frecuencias no superiores a 50Hz.
Condensador de papel
Condensador de plástico bobinado. 1 y 2 son las dos hojas de plástico y a y b son dos hojas de aluminio enrolladas conjuntamente.
De plástico
Sus características más importantes son: gran resistencia de aislamiento (lo cual permite conservar la carga gran ), volumen reducido y excelente comportamiento a la humedad y a las variaciones de temperatura, además, tienen la propiedad de autor regeneración en caso de perforación en menos de 10s. Los materiales más utilizados son: poli estireno (styroflex), poliéster (mylar), poli carbonato (Macrofol) y politetrafluoretileno (teflón). Se fabrican en forma de bobinas o multicapas.También se conocen como MK. Se fabrican de 1nF a 100mF y tensiones de 25-63-160-220-630v, 0.25-4Kv. Se reconocen por su aspecto rojo, amarillo y azul.
Cerámico
Los materiales cerámicos son buenos aislantes térmicos y eléctricos. El proceso de fabricación consiste básicamente en la metalización de las dos caras del material cerámico.Se fabrican de 1pF a 1nF (grupo I) y de 1pF a 470nF (grupo II) con tensiones comprendidas entre 3 y 10000v.Su identificación se realiza mediante código alfanumérico. Se utilizan en circuitos que necesitan alta estabilidad y bajas pérdidas en altas frecuencias.
Condensador cerámico de disco
Condensador cerámico de placa
Electrolítico
Permiten obtener capacidades elevadas en espacios reducidos. Actualmente existen dos tipos: los de aluminio, y los de tántalo. El fundamento es el mismo: se trata de depositar mediante electrolisis una fina capa aislante. Los condensadores electrolíticos deben conectarse respetando su polaridad, que viene indicada en sus terminales, pues de lo contrario se destruiría.
Símbolo de un condensador electrolítico y de tántalo
Condensador electrolítico
Condensador de tántalo
De mica
Son condensadores estables que pueden soportar tensiones altas, ya que la rigidez dieléctrica que presenta es muy elevada. Sobre todo se emplean en circuitos de alta frecuencia. Se utilizan en gamas de capacidades comprendidas entre 5pf y 100000pF. La gama de tensiones para las que se fabrican suelen ser altas (hasta 7500v). Se están sustituyendo por los de vidrio, de parecidas propiedades y más barato.
Condensadores variables
Constan de un grupo de armaduras móviles, de tal forma que al girar sobre un eje se aumenta o reduce la superficie de las armaduras metálicas enfrentadas, variándose con ello la capacidad. El dieléctrico empleado suele ser el aire, aunque también se incluye mica o plástico.
Condensadores ajustables
Denominados también trimmers, los tipos más utilizados son los de mica, aire y cerámica.
Las bobinas
Son componentes pasivos de dos terminales que generan un flujo magnético cuando se hacen circular por ellas una corriente eléctrica. Se fabrican arrollando un hilo conductor sobre un núcleo de material ferromagnético o al aire. Su unidad de medida es el Henrio (H) en el Sistema Internacional pero se suelen emplear los submúltiplos mH y mH.Sus símbolos normalizados son los siguientes:
1. Bobina
2. Inductancia
3. Bobina con tomas fijas
4. Bobina con núcleo ferromagnético
5. Bobina con núcleo de ferroxcube
6. Bobina blindada
7. Bobina electroimán
8. Bobina ajustable
9. Bobina variable
Existen bobinas de diversos tipos según su núcleo y según tipo de arrollamiento.Su aplicación principal es como filtro en un circuito electrónico, denominándose comúnmente, choques.
CARACTERíSTICAS
1. Permeabilidad magnética (m).- Es una característica que tiene gran influencia sobre el núcleo de las bobinas respecto del valor de la inductancia de las mismas. Los materiales ferromagnéticos son muy sensibles a los campos magnéticos y producen unos valores altos de inductancia, sin embargo otros materiales presentan menos sensibilidad a los campos magnéticos.El factor que determina la mayor o menor sensibilidad a esos campos magnéticos se llama permeabilidad magnética.Cuando este factor es grande el valor de la inductancia también lo es.
2. Factor de calidad (Q).- Relaciona la inductancia con el valor óhmico del hilo de la bobina. La bobina será buena si la inductancia es mayor que el valor óhmico debido al hilo de la misma.
TIPOS DE BOBINAS
1. FIJAS
Con núcleo de aire
El conductor se arrolla sobre un soporte hueco y posteriormente se retira este quedando con un aspecto parecido al de un muelle. Se utiliza en frecuencias elevadas. Una variante de la bobina anterior se denomina solenoide y difiere en el aislamiento de las espiras y la presencia de un soporte que no necesariamente tiene que ser cilíndrico. Se utiliza cuando se precisan muchas espiras. Estas bobinas pueden tener tomas intermedias, en este caso se pueden considerar como 2 o más bobinas arrolladas sobre un mismo soporte y conectadas en serie. Igualmente se utilizan para frecuencias elevadas.
Con núcleo sólido
Poseen valores de inductancia más altos que los anteriores debido a su nivel elevado de permeabilidad magnética. El núcleo suele ser de un material ferromagnético. Los más usados son la ferrita y el ferroxcube. Cuando se manejan potencias considerables y las frecuencias que se desean eliminar son bajas se utilizan núcleos parecidos a los de los transformadores (en fuentes de alimentación sobre todo). Así nos encontraremos con las configuraciones propias de estos últimos. Las secciones de los núcleos pueden tener forma de EI, M, UI y L.

Bobina de ferrita
Bobina de ferrita de nido de abeja
Bobinas de ferrita para SMD
Bobinas con núcleo toroidal
Las bobinas de nido de abeja se utilizan en los circuitos sintonizadores de aparatos de radio en las gamas de onda media y larga. Gracias a la forma del bobinado se consiguen altos valores inductivos en un volumen mínimo.Las bobinas de núcleo toroidal se caracterizan por que el flujo generado no se dispersa hacia el exterior ya que por su forma se crea un flujo magnético cerrado, dotándolas de un gran rendimiento y precisión. La bobinas de ferrita arrolladas sobre núcleo de ferrita, normalmente cilíndricos, con aplicaciones en radio es muy interesante desde el punto de vista practico ya que, permite emplear el conjunto como antena colocándola directamente en el receptor.
Las bobinas grabadas sobre el cobre , en un circuito impreso tienen la ventaja de su mínimo coste pero son difícilmente ajustables mediante núcleo.
2. VARIABLES
También se fabrican bobinas ajustables. Normalmente la variación de inductancia se produce por desplazamiento del núcleo.Las bobinas blindadas pueden ser variables o fijas, consisten encerrar la bobina dentro de una cubierta metálica cilíndrica o cuadrada, cuya misión es limitar el flujo electromagnético creado por la propia bobina y que puede afectar negativamente a los componentes cercanos a la misma.
google_protectAndRun("ads_core.google_render_ad", google_handleError, google_render_ad);
Me FUENTE DUAL -15V A 15V
Uno de los primeros circuitos que se necesitan para realizar montajes electrónicos es una fuente de tensión continua, dado que casi todos los circuitos utilizan una alimentación de corriente continua para su funcionamiento.Muchos circuitos integrados necesitan además una alimentación de tipo bipolar, es decir positiva y negativa con respecto al nivel neutro o de tierra y es por eso que se necesita con frecuencia una fuente como la que aquí se presenta que proporciona dos tensiones de polaridad opuesta de +15v y -15v con respecto a la tensión de cero.Esta fuente nos permite disponer, además de las dos tensiones de polaridad opuesta, de una sola tensión de + 15v o de una tensión de + 30v cuando tomamos como referencia de tierra la tensión negativa de -15v.Además estas tensiones son lo suficientemente altas como para cumplir los requisitos de alimentación de la mayoría de los circuitos integrados y también, en caso necesario, se pueden derivar de ellas tensiones menores con circuitos estabilizadores o reguladores a base de resistores, diodos zenner y transistores.La intensidad de salida que se puede obtener en cada rama depende del transformador que utilicemos y de los circuitos integrados que proporcionan la regulación de las tensiones y que sin utilizar ningún tipo de disipadores térmicos pueden trabajar holgadamente suministrando corrientes de unos 100 mA.El circuito es el que se muestra en la figura y dada su sencillez una breve explicación bastará para comprender su funcionamiento y su montaje.
Partimos de un transformador que convierte la tensión eficaz de red de 220 v que se aplica en el primario a dos tensiones eficaces de 15 v + 15 v que se obtienen en dos secundarios independientes o bien en las dos secciones de un secundario con una toma intermedia, teniendo en cuenta que si los bobinados del secundario son independientes han de unirse dos terminales entre sí, formando un terminal común.Las tensiones alternas obtenidas en los secundarios se rectifican por medio del puente de diodos integrado, B80, cuyas salidas positiva y negativa con respecto al terminal común del secundario del transformador se filtran con sendos condensadores electrolíticos de 1000 mF / 35 v a cuya salida obtenemos tensiones continuas, aunque con un cierto rizado, y con valores medios de unos 21 v.La conversión de estas tensiones en otras de +15v y -15v respecto al punto común que tomamos como tierra, se consigue con los dos circuitos integrados LM7815 y LM7915 respectivamente que proporcionan dichas tensiones en sus salidas de forma regulada, es decir con mínimas variaciones de la tensión frente a la carga, pudiendo entregar intensidades de hasta 100 mA sin necesidad de utilizar disipadores de calor con los circuitos integrados.La intensidad máxima que se puede conseguir con estos integrados es, según las especificaciones del fabricante, de 1A siempre que utilicemos los disipadores de calor adecuados y un transformador que proporcione la potencia suficiente, que en este caso de máxima potencia sería de 35 o 40 VA ya que tenemos que tener en cuenta las pérdidas que se producen en el propio transformador y en los elementos del circuito. No obstante, no es recomendable desde el punto de vista de la fiabilidad utilizar este tipo de fuente para corrientes que estén en el límite de posibilidades de los integrados y por ello sería razonable utilizarla para corrientes de carga de hasta unos 500 mA, siempre con los disipadores de calor adecuados a cada caso.A la salida de cada línea de tensión continua se incluye además un condensador cerámico de 100 nF que tiene como misión filtrar las altas frecuencias que puedan estar presentes y hacer que la impedancia de salida de la fuente sea pequeña también para altas frecuencias.Los circuitos integrados que se incluyen en la fuente están autoprotegidos contra cortocircuitos, pero si se quiere aumentar el nivel de protección se pueden incluir también fusibles de la intensidad límite deseada en cada salida, así como un interruptor y una lampara piloto si la fuente se va a utilizar de forma independiente y no incluida en otro montaje que ya incorpore dichos dispositivos.Estos integrados, pertenecen a una familia de circuitos reguladores de tensión en la que se encuentran otros como los LM7805 y LM7905 o los LM7812 y LM7912 que se utilizan para obtener tensiones duales de ±5 v y ±12 v respectivamente, por lo que la adaptación del esquema de la fuente para otras tensiones de salida es muy sencilla y sólo hay que cambiar las especificaciones del transformador y de los condensadores electrolíticos para obtener otra fuente dual de las tensiones deseadas.El montaje de la fuente puede hacerse, dado el bajo número de componentes, en una regleta con contactos soldables aunque es más recomendable realizar un pequeño circuito impreso para que resulte más compacta y robusta, utilizando para ello una pequeña placa de fibra de vidrio con lámina de cobre por una de sus caras.Tendremos que tener precaución de mantener las polaridades correctas en la conexión de todos los componentes, en particular de los condensadores electrolíticos, respetar el esquema de conexión de los integrados, utilizar cable bifilar de 1A para la conexión del transformador a la red, para lo que necesitaremos también una clavija de enchufe de hasta 3A/220v, y cable de la sección adecuada a la intensidad que se vaya a utilizar a la salida de los secundarios y a la salida de las lineas de tensión contínua de ±15v.Cualquier comprobación o medida que se realice sobre el circuito cuando esté conectado a la red de tensión eléctrica debe hacerse con el máximo cuidado, pues existen tensiones en él que podrían resultar peligrosas para la vida y la salud de las personas.






FUENTE REGULABLE HASTA 15V
Corriente continua (CC)

La corriente continua (CC), es el resultado del flujo de electrones (carga negativa) por un conductor (alambre o cable de cobre casi siempre), que va del terminal negativo al terminal positivo de una batería (circula en una sola dirección), pasando por una carga. Un foco / bombillo en este caso.
La corriente continua no cambia su magnitud ni su dirección con el tiempo.
No es equivocación, la corriente eléctrica sale del terminal negativo y termina en el positivo.
Lo que sucede es, que es un flujo de electrones que tienen carga negativa.
La cantidad de carga de electrón es muy pequeña. Una unidad de carga muy utilizada es el Coulomb (mucho más grande que la carga de un electrón).
1 Coulomb = la carga de 6 280 000 000 000 000 000 electronesó en notación científica: 6.28 x 1018 electrones
Para ser consecuentes con nuestro gráfico y con la convención existente, se toma a la corriente como positiva y ésta circula desde el terminal positivo al terminal negativo.
Lo que sucede es que un electrón al avanzar por el conductor va dejando un espacio [hueco] positivo que a su vez es ocupado por otro electrón que deja otro espacio [hueco] y así sucesivamente, generando una serie de huecos que viajan en sentido opuesto al viaje de los electrones y que se puede entender como el sentido de la corriente positiva que se conoce.


google_protectAndRun("ads_core.google_render_ad", google_handleError, google_render_ad);

La corriente es la cantidad de carga que atraviesa la lámpara en un segundo, entonces
Corriente =Carga en coulombs / tiempoóI = Q / T
Si la carga que pasa por la lámpara es de 1 coulomb en un segundo, la corriente es de 1 amperio
Nota: Coulomb es también llamado Coulombio
Ejemplo: Si por la lámpara o bombillo pasa una carga de 14 coulombs en un segundo, entonces la corriente será:
I = Q / T = 14 coulombs/1 seg = 14 amperios
La corriente eléctrica se mide en (A) Amperios y para circuitos electrónicos generalmente se mide en mA (miliAmperios) ó (uA) microAmperios. Ver las siguientes conversiones.
1 mA (miliamperio) = 0.001 A (Amperios)1 uA (microAmperio) = 0.000001 A (Amperios)
Corriente Alterna (CA / AC)

La diferencia de la corriente alterna con la corriente continua, es que la corriente continua circula sólo en un sentido.
La corriente alterna (como su nombre lo indica) circula por durante un tiempo en un sentido y después en sentido opuesto, volviéndose a repetir el mismo proceso en forma constante.
Este tipo de corriente es la que nos llega a nuestras casas y la usamos para alimentar la TV, el equipo de sonido, la lavadora, la refrigeradora, etc.
En el siguiente gráfico se muestra el voltaje (que es también alterno) y tenemos que la magnitud de éste varía primero hacia arriba y luego hacia abajo (de la misma forma en que se comporta la corriente) y nos da una forma de onda llamada: onda senoidal.
El voltaje varía continuamente, y para saber que voltaje tenemos en un momento específico, utilizamos la fórmula; V = Vp x Seno (Θ) donde Vp = V pico (ver gráfico) es el valor máximo que obtiene la onda y Θ es una distancia angular y se mide en grados.
Aclarando un poco esta última parte y analizando el gráfico, se ve que la onda senoidal es periódica (se repite la misma forma de onda continuamente)
Si se toma un período de ésta (un ciclo completo), se dice que tiene una distancia angular de 360 grados.
Y con ayuda de la fórmula que ya dimos, e incluyendo Θ (distancia angular para la cual queremos saber el voltaje) obtenemos el voltaje instantáneo de nuestro interés.
Para cada distancia angular diferente el valor del voltaje es diferente, siendo en algunos casos positivo y en otros negativo (cuando se invierte su polaridad).

Ley de OHM

La Ley de Ohm se puede entender con facilidad si se analiza un circuito donde están en serie, una fuente de voltaje (una batería de 12 voltios) y una resistencia de 6 ohms (ohmios).Se puede establecer una relación entre la voltaje de la batería, el valor de la resistencia y la corriente que entrega la batería y que circula a través de dicha resistencia.Esta relación es: I = V / R y se conoce como la Ley de OhmEntonces la corriente que circula por el circuito (por la resistencia o resistor) es: I = 12 Voltios / 6 ohms = 2 Amperios.De la misma manera, de la fórmula se puede despejar la tensión en función de la corriente y la resistencia, entonces la Ley de Ohm queda: V = I * R. Así si se conoce la corriente y la resistencia se puede obtener la tensión entre los terminales de la resistencia, así: V = 2 Amperios * 6 ohms = 12 V La ley de Ohm - Relación entre tensión, corriente y resistencia - Electrónica UnicromAl igual que en el caso anterior, si se despeja la resistencia en función del voltaje y la corriente, y se obtiene la Ley de Ohm de la forma: R = V / I.Entonces si se conoce la tensión en la resistencia y la corriente que pasa por ella se obtiene que: R = 12 Voltios / 2 Amperios = 6 ohmsEs interesante ver que la relación entre la corriente y la tensión en una resistencia siempre es lineal y la pendiente de esta línea está directamente relacionada con el valor de la resistencia. Así, a mayor resistencia mayor pendiente. Ver gráfico abajo.Para recordar las tres expresiones de la Ley de Ohm se utiliza el siguiente triángulo que tiene mucha similitud con las fórmulas analizadas anteriormente.Triángulo de la Ley de Ohm - Electrónica UnicromTriángulo de la ley de OhmV = I x R I = V / R R = V / I